Semidefinite programming and arithmetic circuit evaluation
نویسندگان
چکیده
منابع مشابه
Semidefinite programming and arithmetic circuit evaluation
A rational number can be naturally presented by an arithmetic computation (AC): a sequence of elementary arithmetic operations starting from a fixed constant, say 1. The asymptotic complexity issues of such a representation are studied e.g. in [2, 9] in the framework of the algebraic complexity theory over arbitrary field. Here we study a related problem of the complexity of performing arithmet...
متن کاملApplication of Semidefinite Programming to Circuit Partitioning
Partitioning Changhui Cris Choi Department of Management S ien es The University of Iowa Iowa City, Iowa 52242, U.S.A. Yinyu Ye Department of Management S ien es The University of Iowa Iowa City, Iowa 52242, U.S.A. August 23, 1999 Abstra t In this paper we apply Semide nite Programming (SDP) to solving the ir uit partition problem. Unlike other lo al sear h methods, we rst translate the hypergr...
متن کاملSemidefinite Programming and Integer Programming
2 Semidefinite Programming: Duality, Algorithms, Complexity, and Geometry 3 2.1 Duality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.2 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.3 Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.4 Geometry . . ...
متن کاملSemidefinite Programming
3 Why Use SDP? 5 3.1 Tractable Relaxations of Max-Cut . . . . . . . . . . . . . . . . . . . . . . . . 5 3.1.1 Simple Relaxation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 3.1.2 Trust Region Relaxation . . . . . . . . . . . . . . . . . . . . . . . . . 6 3.1.3 Box Constraint Relaxation . . . . . . . . . . . . . . . . . . . . . . . . 6 3.1.4 Eigenvalue Bound . . . . . . . . . . . . ...
متن کاملSemidefinite Programming
In semidefinite programming, one minimizes a linear function subject to the constraint that an affine combination of symmetric matrices is positive semidefinite. Such a constraint is nonlinear and nonsmooth, but convex, so semidefinite programs are convex optimization problems. Semidefinite programming unifies several standard problems (e.g., linear and quadratic programming) and finds many app...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete Applied Mathematics
سال: 2008
ISSN: 0166-218X
DOI: 10.1016/j.dam.2007.04.023